The in-vivo studies described in this report demonstrate that spinal cord IL-27 levels are elevated during the initial phases of EAE, but are almost undetectable in the lymph nodes during the disease phases (Fig. 3a,b). These findings suggest that there might be local
secretion of IL-27 by resident spinal cord cells (potentially astrocytes) during the early phases. These observations are supported by previous studies which demonstrate that CNS glial cells produce several IL-12 family cytokines (including IL-27) during EAE development [23, 24]. Combined with the in-vitro studies described in this report, our data suggest that during the initial phases of EAE, astrocytes might inhibit the proliferation and secretion of invading lymphocytes HDAC inhibitors in clinical trials most probably by secreting IL-27. However, the DAPT in-vivo environment is probably more complex and further work will need to be carried out to confirm that astrocytes are the main source of IL-27. IFN-γ is a classic inflammatory cytokine associated with autoimmune diseases [48]. Many pathogenic immune cells such as Th1, Tc1 and natural killer (NK) cells are characterized by IFN-γ production [49]. IFN-γ can induce MHC-II expression on antigen-presenting cells [50-52]. Microglial cells are well-described CNS antigen-presenting cells [53]; conversely, astrocytes (the most abundant
cells in the CNS) have rarely been examined in the context of antigen presentation. Our study demonstrates a dose-dependent relationship between IFN-γ concentrations and MHC-II expression on astrocytes (Fig. 3d,e). When astrocytes are
pretreated with IFN-γ, they can promote the proliferation and secretion of IFN-γ, IL-17, IL-4 and TGF-β by MOG35–55-specific lymphocytes (Fig. 6a,b) and astrocytes, in turn, express elevated levels of MHC-II (Fig. 6c). Unfortunately, astrocytes still secrete few IL-27 (Fig. 2a). Due to the fact that IL-27 mediates a strong limitation on IL-17-producing cells [29, 46, 47, 54], the promotion of IL-17 levels is not as significant as IFN-γ. These indicate that IFN-γ-treated astrocytes might turn into antigen-presenting cells with lymphocyte activating potential. In vivo, we have demonstrated that IFN-γ production in the spinal cord and lymph nodes could also be detected, supporting previously published observations [55]. Reverse transcriptase The highest levels of IFN-γ production are observed in the spinal cord during the peak phases of EAE (Fig. 3c). Under these conditions, resident CNS cells are activated and converted into antigen-presenting cells [51]. Quantitative analysis of MHC-II expression in the spinal cord shows a positive correlation with IFN-γ production (Fig. 4). Because the observed up-regulation in MHC-II expression may be due to activation of macrophages and/or microglia [56], as well as astrocytes, we focused on determining the level of MHC-II expression on astrocytes.