1. While the mean value for d = 5 (Fig. 2c) is rather similar (33.3 ± 69.2), its range size check details frequency distribution has a higher skewness (4.5) and a higher maximum (831). Fig. 2 Range size frequency distributions for all species. a Range size frequency distributions of the point-to-grid data. b–e Range size frequency distributions for selected interpolation distances. f Distance-weighted range size frequency distributions. The y-axis extends to 3,800, including a gap for y-values between 320 and 3,100 H 89 datasheet species richness Although our original point-to-grid species richness map (Fig. 3a) contains more species than
the species richness map of a previous study (Morawetz and Raedig 2007) it identifies rather similar biodiversity centers. Point-to-grid species richness centers lie in Guatemala and adjacent regions, in Costa Rica and Panama reaching into the Chocó, in the Guyanas and at the border triangle of Venezuela, Colombia and Brazil. Moreover they stretch buy Doramapimod along the Andes (with peaks in the Ecuadorian and Peruvian Andes), along the Amazon with peaks close to Iquitos, Manaus, Santarém and Belém, and at the Brazilian Atlantic coast (Fig. 3a). The combination of the species richness grids over all distances according to Eq. 1 yields the map of weighted species richness (Fig. 3b) and results in four prominent species richness
centers: one in Central America (1), crossing into the Andean species richness center (2), one Amazonian center (3) and one center in coastal Brazil (4). The final species richness map (Fig. 3c) adjusts for sampling effort according to these centers of species richness. It turned out that the reference quadrats with the maximum number of species chosen for each of the four centers are all located close to cities and rivers, i.e. easily accessible and therefore related to higher sampling effort: the quadrat at Iquitos (Peru) for Amazonia, the quadrat north from San José (Costa Rica) for Central America, the quadrat at Cali (Colombia, Valle de Cauca) for the Andes, and the quadrat at Rio de Janeiro (Brazil) for the Mata Atlântica. Fig. 3
Species richness of Neotropical angiosperms per quadrat. a Point-to-grid species richness (maximum number of species per quadrat: 331). b Weighted species richness (maximum however number of species per quadrat: 391). c Species richness adjusted for sampling effort (maximum number of species per quadrat: 331) with delineation of the four largest species richness centers. 1—Central American, 2—Andean, 3—Amazonian, 4—Mata Atlântica species richness center. Projection: Aitoff, Central Meridian 60°W Transferring the outlines of these centers of species richness to the maps of point-to-grid (Fig. 3a) and adjusted species richness (Fig. 3c), the Amazonian point-to-grid center of species richness has the lowest mean value (50.7 ± 49.5 species per quadrat, Table 1), whereas the mean value for the Amazonian center of adjusted species richness is highest (143.5 ± 32.9).