1989; Stewart and Brudvig 1998). Cyt b 559 is, therefore, the terminal secondary electron donor within PSII. It may additionally be rereduced by the plastoquinone pool, leading to a cyclic process for the removal of excess, damaging oxidizing
equivalents selleck products from PSII when the system is unable to drive water oxidation (Shinopoulos and Brudvig 2012). Although the final location of the oxidizing equivalent passed along the secondary electron-transfer pathway has been determined to be Cyt b 559 (Vermeglio and Mathis 1974; de Paula et al. 1985), the pathway of electron transfer from Cyt b 559 to P680 + has not been fully characterized. The distance of about 40 Å between the two cofactors indicates that they do not participate in direct electron transfer, and it has indeed been observed that Chl and Car are intermediates (de Paula et al. 1985; Hanley et al. 1999; Vrettos et al. 1999; Tracewell et al. 2001; Faller et al. 2001). It has also NU7441 been shown that there are at least two redox-active carotenoids (Car∙+) in PSII based on the shift of the Car∙+ near-IR peak over a range of illumination temperatures and the wavelength-dependant decay rate of the Car∙+ absorbance (Tracewell and Brudvig 2003; Telfer et al. 2003). There are as many as 5 redox-active
Chl (Chl∙+) (Tracewell and Brudvig 2008; Telfer et al. 1990), with one ligated to D1-His 118 (Stewart et al. 1998). However, there are 11 Car and 35 Chl per PSII, as seen in Fig. 2, and most of the redox-active cofactors have not been specifically identified. Some Chl∙+ may be in CP43 and CP47, peripheral subunits that bind many Chl molecules (Tracewell and Brudvig 2008). In regard to the two Car∙+, it has been observed that the average distance from the nonheme
iron to the two Car∙+ is 38 Å, and it has been hypothesized that one Car∙+ is Car D2 ∙+ (Lakshmi et al. 2003; Tracewell and Brudvig 2003). This seems likely, because CarD2 is the closest cofactor to both P680 and Cyt b 559, with edge-to-edge distances of 11 and 12 Å, respectively. The oxidation of YD Branched chain aminotransferase results in a shift of the Car∙+ near-IR peak, indicating proximity of at least one Car∙+ to YD (Tracewell and Brudvig 2003), although electrochromic effects can propagate significant distances though PSII (Stewart et al. 2000). A relatively higher yield of Car∙+ than Chl∙+ is observed at lower temperatures, with increased Chl∙+ at higher temperatures, also indicating that Car∙+ is closer than Chl∙+ to P680 (Hanley et al. 1999). Fig. 2 The learn more arrangement of cofactors in PSII, viewed from the membrane surface (PDB ID: 3ARC).