Dimer formation was enhanced by oxidizing conditions (100 μM CuPhen) and eliminated by treatment with reducing agent (100 mM DTT). To test if the crosslinking of subunits in GluA2-A665C was specific to functional receptors, i.e., those that could be controlled by iGluR ligands, we tested for dimerization in various conditions. A substantial dimer fraction was observed in the presence of 500 μM glutamate (30% ± 4%; n = 11 blots). This dimerization was specific to the introduction of cysteine at position 665 because the nearby R661C mutant, which exhibited minimal inhibition in electrophysiological assays, showed indistinguishable
dimer formation from the background in the same conditions (14% ± 2%; n = 5; p = 0.99 versus GluA2 7 × Cys
(−); Dunnett’s post hoc test; Figures 3D and S3D). Dimerization of the A665C mutant Abiraterone Bcl-2 inhibitor was reduced to control levels by crosslinking in the presence of 10 mM glutamate (14% ± 3%; n = 6 blots; p = 0.026 versus 500 μM glutamate; both with 100 μM cyclothiazide [CTZ]; Figure 3D). Inclusion of DNQX and CTZ produced a level of dimerization in between that of control (R661C) and A665C with 500 μM glutamate, but the difference from either was not significant (n = 5 blots, p = 0.41 versus A665C; p = 0.82 versus R661C; Dunnett’s post hoc test). Our structural, biochemical, and electrophysiological findings suggest that the LBD assembly can adopt a distinct CA conformation that occurs readily in full-length receptors. The CA conformation might be unstable in full-length receptors, but the crosslinked LBD tetramer structure is stabilized by an intersubunit disulfide bond. The absence of the ATD and TMD perhaps also allows the LBDs to adopt this configuration unhindered. What then are the expected consequences of the CA conformation in full-length channels? To investigate whether OA-to-CA transitions
in an intact receptor would require rearrangements of the ATD tetramer conformation, we measured the distance between the Cα atoms of T394 (lobe 1 of the LBD, proximal to the ATD). In an OA-to-CA transition, the pairwise intersubunit distances would likely either decrease or stay about the same (Table S1). Thus, consistent with a minimal role for ATD transitions in gating, OA-to-CA transitions are predicted to not disrupt the conformation of the ATD layer observed in the full-length only receptor structure. One measure of the extent to which the four LBDs provide impetus to gate the channel is the distances between LBD segments proximal to the TMD, i.e., the Cα atoms of P632, for each pair of subunits (Lau and Roux, 2011 and Sobolevsky et al., 2009). We examined these distances in the crosslinked LBD tetramer structure, the full-length GluA2 structure, and several modeled conformations of the LBDs (Table S1). The analysis indicates that the CA conformation results in greater P632-P632 distances relative to the OA conformation.