“Early visual areas (V1, V2, V3/VP, V4v) contain represent


“Early visual areas (V1, V2, V3/VP, V4v) contain representations of the contralateral hemifield within each hemisphere. Little is known about the role of the visual hemifields along the visuo-spatial attention processing hierarchy. It is hypothesized that attentional information processing is more efficient across the hemifields (known as bilateral field advantage) and that the integration of information is greater within one hemifield as compared with across the hemifields.

Using functional magnetic resonance imaging we examined the effect of distance and hemifield on parallel attentional processing in the early visual areas (V1–V4v) at individually mapped retinotopic locations aligned adjacently or separately within or across the hemifields. We found KU-60019 nmr that the bilateral field advantage in parallel attentional processing over separated attended locations can be assigned, at least partly, to differences in distractor

position integration in early visual areas. These results provide evidence for a greater integration of locations between two attended locations within one hemifield than across both hemifields. This nicely correlates with behavioral findings of a bilateral field advantage in parallel attentional processing (when distractors in between cannot be excluded) and DAPT cost a unilateral field advantage if attention has to be shifted across separated locations (when locations in between were integrated). “
“The speed of computations in neocortical networks Florfenicol critically depends on the ability of populations of spiking neurons to rapidly detect subtle changes in the input and translate them into firing rate changes. However, high sensitivity to perturbations may lead to explosion of noise and increased energy consumption. Can neuronal networks reconcile the requirements for high

sensitivity, operation in a low-noise regime, and constrained energy consumption? Using intracellular recordings in slices from the rat visual cortex, we show that layer 2/3 pyramidal neurons are highly sensitive to minor input perturbations. They can change their population firing rate in response to small artificial excitatory postsynaptic currents (aEPSCs) immersed in fluctuating noise very quickly, within 2–2.5 ms. These quick responses were mediated by the generation of new, additional action potentials (APs), but also by shifting spikes into the response peak. In that latter case, the spike count increase during the peak and the decrease after the peak cancelled each other, thus producing quick responses without increases in total spike count and associated energy costs. The contribution of spikes from one or the other source depended on the aEPSCs timing relative to the waves of depolarization produced by ongoing activity.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>