Figure 1 OmpW facilitates H 2 O 2 and HOCl diffusion through the outer membrane and reconstituted proteoliposomes. A and C. H2O2 and HOCl levels
were measured indirectly by specific fluorescence assays in the wild type (14028s), mutant (∆ompW) and genetically complemented strains (∆ompW/pBAD-ompW + arabinose). Exponentially growing cells were exposed to H2O2 (A) or NaOCl (C) for 5 min and fluorescence was determined in the extracellular (extra) and intracellular fractions. B and D. Free liposomes (L), proteoliposomes reconstituted with S. Typhimurium OmpW (PL OmpW) or OmpA AZD1080 (PL OmpA) proteins were incubated with H2O2 (B) or NaOCl (D) for 5 min and fluorescence was determined in the extraliposomal (extra) and intraliposomal fractions. AU indicates arbitrary units. Values represent the average of four independent experiments ± SD. To establish a direct contribution
of OmpW in H2O2 and HOCl transport, we used reconstituted proteoliposomes. OmpW-proteoliposomes showed a 3-MA mouse decrease in H2O2 and HOCl extra/intraliposomal ratios (3.5 and 5-fold respectively) when compared to free liposomes (Figure 1B and D). Proteoliposomes with S. Typhimurium OmpA porin were used as a negative control as previously described [12]. As expected, OmpA-proteoliposomes showed similar levels to those of free liposomes, AZD1152 mw indicating that OmpW facilitates H2O2 and HOCl uptake. Since OmpW channels both toxic compounds across the lipid bilayer, we hypothesized that a ∆ompW strain should be more resistant to both toxic compounds when compared to the wild type strain. As shown in Figure 2, exposure of ∆ompW to H2O2 4 mM or HOCl 5 mM resulted in an increase in the number of colony forming units (CFU) after 60 Ixazomib molecular weight min of treatment. However, at longer periods the CFU count between strains 14028s and ∆ompW was similar. At 30 min post-treatment with either of the toxic compounds, strain ∆ompW showed an increase from 1×106 CFU/ml to approximately 6×107 CFU/ml. In contrast, the CFU/ml count for strain 14028s remained
almost unaltered at 1×106, resulting in a 1.5-log10-fold increase in growth for ∆ompW. A similar result was observed after 60 min of treatment where the ompW mutant strain showed an increase from 6×107 to 1.5×109 CFU/ml while the wild type strain changed from 1×106 to 8×107 CFU/ml. Our results suggest that the absence of OmpW in the mutant strain represents an advantage at short time points due to a decreased permeability towards both H2O2 and HOCl. At longer periods, OM permeability should be reduced because exposure to both toxic compounds results in a negative regulation of S. Typhimurium porins including OmpD, OmpC and OmpF [12, 21]. One important possibility that cannot be ruled out at this time is that in the ∆ompW strain, the expression of other porins or the OM lipid composition might be altered, therefore changing OM permeability.