In this case, HPMCAS can form H bonds with griseofulvin directly;

In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA click here to the solid dispersion may enhance the stability of the amorphous griseofulvin due to greater interaction with griseofulvin. The X-ray powder diffraction results showed that griseofulvin (binary and ternary solid dispersions) remained amorphous for more than 19 months stored at 85% RH compared with the spray-dried griseofulvin which crystallized totally within 24 h at ambient conditions. The Fourier transform infrared scan showed that

griseofulvin carbonyl group formed hydrogen bonds with the hydroxyl group in the HPMCAS, which could explain the extended stability of the drug. Further broadening in the peak could be seen when PHPMA was added to the solid dispersion, which indicates stronger interaction. The glass transition

temperatures increased in the ternary solid dispersions regardless of HPMCAS grade. The dissolution rate of the drug in the solid dispersion (both binary and ternary) has significantly increased when compared with the dissolution profile of the spray-dried griseofulvin. These results reveal significant stability of the amorphous form due to the hydrogen bond formation with the polymer. The addition of the third polymer improved the stability but had a minor impact on dissolution.”
“Onion anthracnose, caused by Colletotrichum gloeosporioides, is one of the main diseases of onions in the State of Pernambuco. We examined the pathogenicity of 15 C. gloeosporioides strains and analyzed their genetic variability using RAPDs and internal

transcribed this website spacers (ITS) of the rDNA region. Ten of the strains were obtained from substrates and hosts other than onion, including chayote (Sechium edule), guava (Psidium guajava), pomegranate (Punica granatum), water from the Capibaribe River, maracock (Passiflora AC220 sp), coconut (Cocus nucifera), surinam cherry (Eugenia uniflora), and marine soil; five isolates came from onions collected from four different regions of the State of Pernambuco and one region of the State of Amazonas. Pathogenicity tests were carried out using onion leaves and bulbs. All strains were capable of causing disease in leaves, causing a variable degree of lesions on the leaves; four strains caused the most severe damage. In the onion bulb tests, only three of the above strains caused lesions. Seven primers of arbitrary sequences were used in the RAPD analysis, generating polymorphic bands that allowed the separation of the strains into three distinct groups. The amplification products generated with the primers ITS1 and ITS4 also showed polymorphism when digested with three restriction enzymes, DraI, HaeIII and MspI. Only the latter two demonstrated genetic variations among the strains. These two types of molecular markers were able to differentiate the strain from the State of Amazonas from those of the State of Pernambuco.

Comments are closed.