Other reports that describe HIV-1 induced maturation of DCs focus on highly
virus-sensitive plasmacytoid DC which have immunologically and anatomically distinct characteristics from those of myeloid lineage [48–54]. The activation of pDC by HIV-1 has also been reported to Stem Cell Compound Library order induce the maturation of bystander DC of myeloid origin [49]. However, in this case it is not a direct effect of HIV-1. In the present study, our initial investigations focused on the effects of HIV-1 infection on DC maturation as evaluated by cell surface molecule expression. Consistent with previous reports that described HIV-1-induced inhibition of DC maturation [44,63–67], we also found that HIV-1 inhibited Protease Inhibitor Library clinical trial the expression of several
cell surface molecules associated with a mature phenotype. Specifically, it was observed that up-regulation of CCR7 and MHC-II was inhibited by HIV-1. The observed inhibition of MHC-II expression in the presence of sustained co-stimulatory molecule expression after incubation with maturation-inducing cytokines also complements previous ex-vivo observations in which DC expressing only select maturation markers were found to accumulate abnormally in the lymphoid tissues of HIV-1 infected individuals [81–84]. This lower MHC-II molecule expression could result in impaired DC-mediated presentation of exogenous antigens in both Amisulpride the periphery and in secondary lymphoid organs. The significance of blunted CCR7 up-regulation is unknown, but may contribute to HIV-1 pathogenesis. While reduced CCR7 expression may not facilitate the dissemination of HIV-1 to naive T cells in secondary lymphoid tissue, it could delay the development of an effective adaptive immune response. Specifically, impaired expression
of CCR7 by activated DC in an inflammatory cytokine-rich environment would allow for the maintenance of partially activated HIV-1-infected DC in the anatomical periphery in the presence of virus-susceptible resident effector T cells and potentially increase HIV-1 infectivity [3]. To complement the characterization of the effects of HIV-1 on cell surface molecule expression, we also investigated several functional aspects of mature DC. Maturation of DC is associated with decreases in endocytic activity [3,68], which was confirmed in our experimental system (Fig. 4a). When DC were infected with HIV-1, this inhibition of endocytosis was blunted (Fig. 4c), demonstrating that HIV-1 infection inhibits functions associated with mature DC in addition to its effects on surface marker expression. To define further the effects of HIV-1 on the functional aspects of mature DC stimulated to undergo maturation, we evaluated antigen presentation as measured by autologous T cell proliferation.