Several molecular diversity surveys over different spatial scales ranging from centimeters to tens of thousands of kilometers have supported distance-decay relationships (effect of distance on spatial interactions) for microbial organisms, including bacteria (e.g. [26, 27]), archaea (e.g. [28]), fungi (e.g. [29]) and also protists (e.g. [30–32]). Even organisms with large population sizes and the potential to spread globally using spores, which were assumed to be cosmopolitan [13, 33], show significant 3-MA mw non-random spatial distribution patterns [34]. However, in our study of ciliate communities in these
DHABs, a similar distance-decay relationship was not observed (insignificant correlation between Bray-Curtis and geographic distances in Pearson correlation Avapritinib purchase and Mantel test). A potential explanation could be that the small number of compared locations may have masked true patterns. Alternatively, the presence of a metacommunity [35] within the Mediterranean Sea could cause the absence of a significant heterogeneous distribution [36, 37]. In limnic systems geographic distance has been found to influence asymmetric latitudinal genus richness patterns between 42° S and the pole [32]. However, this seems to be a fundamental difference between marine and “terrestrial”
(land-locked) Selleckchem AZD5582 systems. Furthermore, on a global scale, historical factors were significantly more responsible for the geographic patterns in community composition of diatoms than environmental conditions [32]. In other marine studies ciliates showed variations in taxonomic composition between closely related samples, which were explained by environmental factors rather than distance [38]. Similarly, in our study geographic distance could not explain the variations Glycogen branching enzyme observed between the ciliate communities. Instead, hydrochemistry explained some of the variation in observed ciliate community patterns, and there was a strong separation of halocline interface and brine communities (Figure
3). The DHAB interfaces are characterized by extremely steep physicochemical gradients on a small spatial scale typically less than a couple of meters (for example, only 70 cm in Medee, [39]). The concentrations of salt and oxygen are the most prominent environmental factors that change dramatically along the interfaces into the brines. In a recent metadata-analysis of environmental sequence data, these two factors were identified as strong selection factors for ciliates [40]. Also for bacterial communities, salt concentration emerged as the strongest factor influencing global distribution [41]. Likewise, the bacterioplankton community composition in coastal Antarctic lakes was weakly related with geographical distance, but strongly correlated with salinity [42]. Accordingly, Logares et al.