White matter volume predicted the greatest amount of variance (47

White matter volume predicted the greatest amount of variance (47.6%). The same model was non-significant when volumes of the primary motor cortex were considered. We conclude that white matter volume in the cortex underlying the TMS coil may be a novel predictor for behavioral response to

5-Hz rTMS over the ipsilesional primary somatosensory followed by motor practice. “
“The ability of the auditory system to resolve sound temporal information is crucial for the understanding of human speech and other species-specific communications. Gap detection threshold, i.e. the ability to detect the shortest duration of a silent interval in a sound, is commonly used to study the auditory temporal resolution. Behavioral studies in humans and rats have shown that normal developing infants have higher gap detection selleck screening library thresholds than adults; however, the underlying neural mechanism is not fully understood. In the present study, we determined and compared the neural gap detection thresholds in the primary auditory cortex of three age groups of rats: the juvenile group (postnatal day 20–30), adult group I (8–10 weeks), and adult group II (28–30 weeks). We found age-related changes in auditory temporal acuity in the auditory cortex, i.e. the proportion of cortical units with short neural gap detection thresholds

(< 5 ms) was much lower in juvenile groups compared with that in both adult groups at a constant sound level, and no significant differences in neural Selleck RAD001 gap detection thresholds were found between the two adult groups. In addition, units in the auditory cortex of each group generally showed better gap detection thresholds at higher sound levels than at lower sound levels, exhibiting a level-dependent temporal acuity. These results provided evidence for neural correlates of age-related changes in behavioral gap detection

ability during postnatal hearing development. “
“Caffeine is the most commonly used psychoactive stimulant worldwide. It reduces sleep and sleepiness by blocking access to the adenosine receptor. The level of adenosine increases during sleep deprivation, and is thought to induce sleepiness and initiate sleep. Light-induced phase shifts of the rest–activity circadian rhythms are mediated by light-responsive neurons of the suprachiasmatic Thymidylate synthase nucleus (SCN) of the hypothalamus, where the circadian clock of mammals resides. Previous studies have shown that sleep deprivation reduces circadian clock phase-shifting capacity and decreases SCN neuronal activity. In addition, application of adenosine agonists and antagonists mimics and blocks, respectively, the effect of sleep deprivation on light-induced phase shifts in behaviour, suggesting a role for adenosine. In the present study, we examined the role of sleep deprivation in and the effect of caffeine on light responsiveness of the SCN.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>