With the advantages of GO term frequencies and a new strategy to incorporate useful homologous information, GOASVM can achieve a prediction accuracy of 72.2% on a new independent test set comprising novel proteins that were added to Swiss-Prot six years later than Quizartinib ic50 the creation date of the training set. GOASVM and Supplementary materials are available online at http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html. (c) 2013 Elsevier Ltd. All rights reserved.”
“Eye movements
were monitored during picture viewing, and effects of hedonic content, perceptual composition, and repetition on scanning assessed. In Experiment 1, emotional and neutral pictures that were figure-ground compositions or more complex scenes were presented for a 6-s
free viewing period. Viewing emotional pictures or complex scenes prompted more fixations and broader scanning of the visual array, compared to neutral pictures or simple figure-ground compositions. Effects of emotion and composition were independent, supporting the hypothesis that these oculomotor indices reflect enhanced Nirogacestat information seeking. Experiment 2 tested an orienting hypothesis by repeatedly presenting the same pictures. Although repetition altered specific scan patterns, emotional, compared to neutral, picture viewing continued to prompt oculomotor differences, suggesting that motivationally relevant cues enhance information seeking in appetitive and defensive contexts.”
“In socially foraging species resource information can be shared between individuals, Rabusertib cell line increasing foraging success. In ant colonies, nestmate recruitment allows high exploitation rates at known resources however, to maximise foraging efficiency this must be balanced with searching for new resources. Many ant species form colonies inhabiting two or more spatially separated but socially connected nests: this type of organisation is known as polydomy. Polydomous colonies may benefit from increased foraging efficiency by carrying out dispersed-central
place foraging. However, decentralisation of the colony may affect recruitment success by limiting interaction between ants based in separate nests. We use an agent-based model which compares the foraging success of monodomous and polydomous colonies in different food environments, incorporating recruitment through pheromone trails and group foraging. In contrast to previous results we show that polydomy is beneficial in some but not all cases. Polydomous colonies discover resources at a higher rate, making them more successful when food is highly dispersed, but their relative success can be lowered by limitations on recruitment success. Monodomous colonies can have higher foraging efficiency than polydomous colonies by exploiting food more rapidly. The results show the importance of interactions between recruitment strategy, colony size, and colony organisation. (c) 2013 Elsevier Ltd. All rights reserved.