The fusion protein, but not rS450–650 or rCRT/39–27, successfully

The fusion protein, but not rS450–650 or rCRT/39–27, successfully induced S450–650-specific IgG production in nude mice (Fig. 4). The potent adjuvanticity of rCRT/39–272 can be partially explained by its direct activating effect on B lymphocytes (12). However, there are other possible ways for it to enhance target Ag-specific humoral lresponses in vivo. After all, adjuvants are typically characterized by their ability to activate professional APCs, www.selleckchem.com/products/Deforolimus.html such as DCs and macrophages, rather than B or T cells. Bone marrow-derived mouse DCs were stimulated

with rCRT/39–272, or rS450–650-CRT, or LPS, or rEGFP for 24 hrs and then analyzed by flow cytometry for CD40 expression, which is regarded as a marker for DC maturation (17). As illustrated in Figure 5, the percentage of CD40+ cells of the groups treated with rCRT/39–272 (24.5%) or rS450–650-CRT (18.6%) was considerably higher than that of the rEGFP control group (6.8%), thus confirming rCRT/39–272 and rS450–650-CRT as potent activators of murine DCs. This is further supported by the fact that rS450–650-CRT as well as rCRT/39–272, but not rEGFP, were able to induce production of IL-12 and IL-1β by DCs in vitro (data not shown). The ability of rCRT/39–272 and rS450–650-CRT

to activate DC is not due to endotoxin contamination because the recombinant proteins used in this study FK228 were passed through polymyxin B agarose to remove endogenous LPS that could have come from the E. coli system. Newly emerging pathogens such as SRAS-CoV and avian influenza viruses are of major concern for public health today. The development of more effective vaccines (and adjuvants) against such infectious agents is urgently needed. Our results reported herein show that fusion protein rS450–650-CRT exhibits much more potent immunogenicity than rS450–650 alone in terms of

eliciting rS450–650-specific IgG responses in vivo. It should be noted, however, that whether such Abs exhibit any neutralizing effect against SARS-CoV infection remains to be tested by using either live virus or pseudo-virus systems. Physical linkage between rS450–650 and CRT/39–272 is necessary for the improved immunogenicity, because a mixture of rS450–650 and Adenosine rCRT/39–272 was no more immunogenic than rS450–650 alone (Fig. 2). Another advantage of rS450–650-CRT over rS450–650 as an immunogen is its better hydrophilicity. When preparing rS450–650, renaturation steps were necessary after Ni-column purification and the resultant product had to be maintained at a relatively low concentration in order to avoid protein aggregation and precipitation. By contrast, no renaturation steps are necessary for preparation of rS450–650-CRT and the final product is less likely to form aggregates in PBS.

The LPS from M huakuii (lines 1 and 2) migrated as three cluster

The LPS from M. huakuii (lines 1 and 2) migrated as three clusters of bands: a very intensively stained R-form LPS, an S-form, and an SR-form. A. lipoferum LPS (lines 3 and 4) was separated into two main fractions: the first one representing an R-form and

the second one, high molecular weight material. Those complete LPS molecules contained approximately 20 repeating units in the check details O-chain, as calculated by comparison with the standard Salmonella LPS (line 7 and 14) (see also: 36). B. japonicum and B. yuanmingense LPSs (lines 5, 6 and 8, 9, respectively) were represented by complete molecules (S-form), mainly with short O-chains. The R fraction (containing only lipid A and core) was scarcely visible on the gel. In contrast, B. elkanii LPS (lines 12 and 13) occurred mainly as an R or SR form accompanied by a small amount of a

ladder-like S-form containing MLN0128 concentration up to 20 repeating units. LPS from B. liaoningense (lines 10 and 11) was represented mainly by an SR-form, though a small amount of the R- and the S-forms was also present. The endotoxic properties of rhizobial LPSs were measured as their ability to gelate Limulus amebocyte lysate. For the LPSs from B. japonicum and B. yuanmingense, gelation was observed at a concentration of 0.1 μg/mL, whereas for the LPSs of B. elkanii, B. sp. (Lupinus), and B. liaoningense, the minimum LPS dose required for a positive reaction was ten times smaller (0.01 μg/mL). The LPSs from M. huakuii and A. lipoferum exhibited significantly greater endotoxic activity and gelated the amebocyte lysate at a concentration of 0.1 ng/mL. For the http://www.selleck.co.jp/products/erastin.html standard LPS preparations (Salmonella and E. coli), a positive reaction was observed at a concentration of 0.01 ng/mL. Production of NO was determined in cultures of THP-1 cells which were stimulated with 1 μg/mL LPS preparations for 24 hr (Fig. 3). A significant

amount of NO release was observed only for the standard LPS of Salmonella enterica bv Typhimurium (more than 300% of negative control). The amount of NO production by cells incubated with the B. sp. (Lupinus), B. elkanii, B. japonicum, M. huakuii, and A. lipoferum LPSs was just over half as much as that for Salmonella endotoxin, and exceeded by 50 to 100% the amount of spontaneous NO production by cells in the control sample. A statistically significant difference in NO production in comparison with the negative control (Student’s t-test, P value <0.05) was noted for B. sp. (Lupinus), B. japonicum, and M. huakuii. Production of the cytokines TNF, IL-1β, and IL-6 was determined in cultures of THP-1 cells stimulated with two LPS concentrations, 0.01 and 1 μg/mL (Fig. 4). At an LPS dose of 0.01 μg/mL, the Bradyrhizobium and the Azospirillum strains induced production of very small amounts of the cytokines. In the case of the two interleukins (IL-1β and IL-6), the measured amounts were within the same range as for the control sample (spontaneous activity of THP-1 cells) and the differences were not statistically significant.

The in-vivo studies described in this report demonstrate that spi

The in-vivo studies described in this report demonstrate that spinal cord IL-27 levels are elevated during the initial phases of EAE, but are almost undetectable in the lymph nodes during the disease phases (Fig. 3a,b). These findings suggest that there might be local

secretion of IL-27 by resident spinal cord cells (potentially astrocytes) during the early phases. These observations are supported by previous studies which demonstrate that CNS glial cells produce several IL-12 family cytokines (including IL-27) during EAE development [23, 24]. Combined with the in-vitro studies described in this report, our data suggest that during the initial phases of EAE, astrocytes might inhibit the proliferation and secretion of invading lymphocytes HDAC inhibitors in clinical trials most probably by secreting IL-27. However, the DAPT in-vivo environment is probably more complex and further work will need to be carried out to confirm that astrocytes are the main source of IL-27. IFN-γ is a classic inflammatory cytokine associated with autoimmune diseases [48]. Many pathogenic immune cells such as Th1, Tc1 and natural killer (NK) cells are characterized by IFN-γ production [49]. IFN-γ can induce MHC-II expression on antigen-presenting cells [50-52]. Microglial cells are well-described CNS antigen-presenting cells [53]; conversely, astrocytes (the most abundant

cells in the CNS) have rarely been examined in the context of antigen presentation. Our study demonstrates a dose-dependent relationship between IFN-γ concentrations and MHC-II expression on astrocytes (Fig. 3d,e). When astrocytes are

pretreated with IFN-γ, they can promote the proliferation and secretion of IFN-γ, IL-17, IL-4 and TGF-β by MOG35–55-specific lymphocytes (Fig. 6a,b) and astrocytes, in turn, express elevated levels of MHC-II (Fig. 6c). Unfortunately, astrocytes still secrete few IL-27 (Fig. 2a). Due to the fact that IL-27 mediates a strong limitation on IL-17-producing cells [29, 46, 47, 54], the promotion of IL-17 levels is not as significant as IFN-γ. These indicate that IFN-γ-treated astrocytes might turn into antigen-presenting cells with lymphocyte activating potential. In vivo, we have demonstrated that IFN-γ production in the spinal cord and lymph nodes could also be detected, supporting previously published observations [55]. Reverse transcriptase The highest levels of IFN-γ production are observed in the spinal cord during the peak phases of EAE (Fig. 3c). Under these conditions, resident CNS cells are activated and converted into antigen-presenting cells [51]. Quantitative analysis of MHC-II expression in the spinal cord shows a positive correlation with IFN-γ production (Fig. 4). Because the observed up-regulation in MHC-II expression may be due to activation of macrophages and/or microglia [56], as well as astrocytes, we focused on determining the level of MHC-II expression on astrocytes.

We first observed that anti-mCD20 mAb (18B12) efficiently deplete

We first observed that anti-mCD20 mAb (18B12) efficiently depleted B cells in the periphery and spleen and to a lesser extent in the peritoneal BTK inhibitor price cavity for a long time-period, in agreement with previous findings [17]. Baseline serum IgG levels were unaffected, presumably because the majority of antibodies are produced from CD20- plasma cells [11]. However, the outcomes of anti-CD20 mAb-mediated B cell depletion on T cell subsets in the previous studies are controversial. Thus, a slight increase in the percentages of naive CD4+ and CD8+ T cells

(CD44lowCD62Lhigh) and a decrease in memory T cells (CD4+CD44highCD62Llow) were reported in one study [17] but not in another study [8]. Furthermore, expansion of regulatory T cells (Treg) was demonstrated recently in some studies [28,29] but not another study [30] in non-obese diabetic (NOD) mice. In this study we found no change in naive/activated/memory T cell subsets and also in Treg subsets. In the Graves’ mouse model we then showed the excellent prophylactic effect of anti-mCD20 mAb for blocking induction of anti-TSHR antibodies and preventing

hyperthyroidism. This outcome could be expected because anti-mCD20 mAb eliminated antibody-producing B cells almost completely before immunization. However, B cell depletion before immunization also suppressed antigen-specific T cell activation learn more significantly in a T cell recall assay. Previously, suppression of in vitro T cell proliferation and/or proinflammatory cytokine [IFN-γ and interleukin (IL)-17] secretion was reported [22,30], as well as in vivo proliferation of autoreactive T cells in response to endogenous autoantigens by B cell depletion [8]. Thus, elimination of both antigen-presentation and

antibody production by B cells is possibly involved in this highly efficient prophylactic effect. The effect of B Tideglusib cell depletion by anti-mCD20 mAb persisted even after the recovery of B cell numbers, as reported previously in diabetes [30]. B cell depletion may be able to ‘reset’ the immune system by breaking the self-perpetuating vicious cycle of autoreactive B cell generation and T cell activation. However, in other cases, continuous B cell depletion was necessary [19]. It is therefore critical to clarify the reason(s) of these differences for optimizing treatment strategies. B cell depletion after the first immunization, when T cells were primed but anti-TSHR antibody production was not observed, was also effective at reducing hyperthyroidism, albeit to a lesser extent than when given before the first immunization.

Assays with antigen in the absence of sera served as negative con

Assays with antigen in the absence of sera served as negative controls. Immunoglobulin titres are expressed this website as OD units, with a value obtained for 1 : 100 diluted serum samples. The proteolytic activity of Cwp84 was quantified with azocasein (Sigma); 50 μg of protease was added to 500 μL of a 5 mg mL−1 azocasein solution in 25 mM Tris (pH 7.5). After 16 h of incubation,

intact azocasein was removed by 3% trichloroacetic acid precipitation, and the amount of released dye was measured spectrophotometrically at 336 nm. The neutralizing activity of the specific anti-Cwp84 hamster sera was tested by monitoring Cwp84-mediated degradation of azocasein. Various amounts of sera were added to the protease, resulting in 1 : 50 dilutions, and after 30 min of incubation at 37 °C, an Navitoclax azocasein mixture was added and assays were performed as described above. To assess the specificity of the neutralizing activity of immunized hamster sera, and to exclude the possibility of a steric hindrance effect, negative control experiments were performed with preimmune hamster sera, using the same dilutions. Statistical

analyses were performed to compare the antibody level (OD405 nm values) directed to Cwp84 in the hamster sera sample of the control group to the Cwp84 immunized group. It shows that antibody levels were not normally distributed. Therefore, we used the Mann–Whitney U-test for nonparametric data to test the null hypothesis that there was no difference between the immunized group and the control group. Analyses were performed using the stata 8.0 (Statacorp, College Station, TX). Statistical significance was set at P=0.05. All P-values were two-sided. The survival of animals following infection was analysed using Kaplan–Meier estimates. Survival rates across groups were compared using log-rank tests. P-values of <0.05 were considered to be statistically significant. Statistical analyses were performed using stata 8.0 (Statacorp). Three groups of hamsters were immunized by 100 μg of the protease Cwp84 by several routes of immunization: rectally, intragastrically and subcutaneously. Then clindamycin

was administered next to animals and, 5 days later, hamsters were challenged by C. difficile spores. Each hamster was sampled under anaesthesia directly by heart puncture. Cwp84-specific IgG, IgA and IgM were quantified by ELISA and the capacity of serum antibodies to neutralize Cwp84 activity in vitro was measured. Serum antibodies against Cwp84 were measured before immunization and 15 days after the second boost. The response was variable within groups (Fig. 1). The poorest response was seen with the intragastric route; the mean OD405 nm was 0.5 and there was no significant difference before and after immunization (P=0.13). Hamsters receiving the protease by the subcutaneous route exhibited a relatively strong response, with a mean of OD405 nm of 1.

Monocytes isolated from PBMC of healthy donors (n=15) displayed s

Monocytes isolated from PBMC of healthy donors (n=15) displayed similar expression

levels of CD300e (Fig. 1A) that were not modulated upon overnight activation with LPS (data not shown). The CD300e expression by peripheral LDE225 in vitro blood mDC is shown in Fig. 1B. To characterize CD300e-mediated activation, we first investigated its ability to induce intracellular Ca2+ mobilization. Engagement of CD300e with a soluble anti-CD300e mAb (UP-H2) did not modify the [Ca2+]i in indo-1 AM-loaded monocytes within 5 min (data not shown). Yet, upon cross-linking with an F(ab′)2 anti-IgG Ab, a rapid and transient increase of intracellular [Ca2+]i was detected, when compared with the lack of response in cells stimulated under the same conditions with an isotype-matched control mAb (MOPC-21) (Fig. 2A). To further explore the functional consequences of CD300e-mediated signaling, we tested the production of ROS. Superoxide anion O production was detectable 30 min after CD300e ligation and increased along the following 2.5 (Fig. 2B). As shown in Fig. 2C, stimulation of monocytes for 3 h with plate-coated anti-CD300e mAb (UP-H2) promoted a significant increase of O (7.95±0.91 nmol/106 cells), when compared with cells treated with the isotype-matched control mAb

(1.92±0.68 nmol/106 cells) or incubated alone (1.57±0.57 nmol/106 cells); a specific www.selleckchem.com/products/Bortezomib.html mAb for triggering receptor expressed on myeloid cell 1 (TREM-1) was used as a positive control (19.51±0.01 nmol/106 cells). To further investigate the functional role of CD300e, monocytes were stimulated for 24 h with plate-coated mAb and analyzed for the PRKD3 expression of surface molecules known to be upregulated upon activation. Basal expression of these molecules in freshly isolated monocytes is shown in Fig. 3A. When compared with cells treated with an isotype-matched control mAb, the levels of CD25, CD83 and CD86 increased in samples stimulated with anti-CD300e mAb, whereas

CD40 and CD54 expression remained unaltered (Fig. 3B). Moreover, cross-linking of CD300e induced a significant production of pro-inflammatory chemokines and cytokines (i.e. IL-8/CXCL8 and TNF-α) (Fig. 3C) that was not further enhanced by LPS-mediated priming (data not shown). Similar studies were performed in freshly isolated mDC, stimulated for 24 h with LPS or plate-coated mAb (Fig. 4B). Compared with freshly isolated cells (Fig. 4A) and control treatments (Fig. 4B), both LPS and anti-CD300e induced mDC activation as revealed by the upregulation of CD40, CD83 and CD86 co-stimulatory molecules. Moreover, CD300e ligation also triggered TNF-α, IL-6, IL-8/CXCL8 and IL-10 production by mDC (Fig. 4C), whereas no IL-12p70 was detected (data not shown). Under these experimental conditions, the production of TNF-α by mDC in response to LPS stimulation was low, in line with a previous report 21.

Act1−/−, TCRβ/δ−/−, and TKO mice (IgG and IgM containing IC, resp

Act1−/−, TCRβ/δ−/−, and TKO mice (IgG and IgM containing IC, respectively)

were not sufficient or of the correct type to attract and fixate complement. It should be noted that this was not due to the relatively young age (20 weeks) of the mice, as staining of kidneys from 8–12 month-old B6.Act1−/− and TKO mice also failed to show glomerular C3 fixation (data not shown). Also, this observation correlates with the fact that none of the mice (up to 12 months of age) developed renal failure as determined by elevated proteinuria levels (data not shown). In addition to developing lupus-like disease, BALB/C.Act1−/− mice develop early and severe SjS-like disease [8]. In contrast, B6.Act1−/− mice failed to develop gross signs of SjS-like disease including enlarged submaxillary glands and elevated serum anti-SSB/La IgG autoantibodies (Fig. 4A–B). We click here did find occasional IgG deposition within the glands of B6.Act1−/− mice which appeared to be diminished

in the absence of T cells, however both WT and B6.Act1−/− mice displayed areas of mononuclear cell infiltration (Supporting Information Fig. 2). T-cell deficiency only had little or no effect on IC deposition (compare TCRβ/δ−/− with WT, Fig. 4C). Thus, Act1-deficiency results in variable disease symptoms in B6 and BALB/C mice, suggesting that epigenetic interactions within different strains play a role in disease specifications. Such phenomenon is well established and has previously been reported to differentially check details affect the susceptibility to autoimmunity [23]. After leaving the BM, immature T1 B cells travel to the spleen where they differentiate into T2 or T3 B cells in a B-cell receptor/BAFF-dependent manner [24], [25]. In BALB/C.Act1−/− and BAFF-Tg mice, B-cell hyperplasia and accelerated B-cell differentiation occur due to the cells’ heightened response to BAFF [2], and results in a skewing in the repertoire of transitional B cells toward the T2 B-cell phenotype (B220+AA4.1+CD23+IgM+), Glutathione peroxidase as well as increased levels of T3 and marginal zone (MZ) B cells [2, 25].

As T cells may represent a possible source of BAFF [26, 27], we evaluated if BAFF-driven T2/T3/MZ B-cell accumulation was present in TKO mice. Sixteen- to eighteen-week-old B6.Act1−/− mice expressed significantly increased numbers of total immature AA4.1+B220+ B cells (p < 0.05 as compared with WT mice, Fig. 5A). Levels of immature B cells were also increased in TCRβ/δ−/− mice and trended toward an increase in TKO mice (Fig. 5A). Mature B cells, including both MZ and FM B-cell subset, were significantly elevated in T-cell-deficient mice regardless of Act1 expression (Fig. 5A–B) as previously described by others [28], while classical PC (B220lowIgD−CD138+) were significantly reduced as a result of T-cell deficiency (Fig. 5C and Supporting Information Fig. 3A–C). B6.Act1−/− mice also displayed elevated levels of MZ B cells, but we found no increase in the number of FM B cells (Fig. 5B).

Significant differences were observed between lesions and healthy

Significant differences were observed between lesions and healthy mucosa. However, the frequency of macrophages was similar in the two ATL lesions (Tables S1 and S2; Figure 2e). In both ATL lesions, neutrophils were heterogeneously distributed in the lamina propria, with accumulation in necrotic areas and fibrinoid deposits. In the remaining areas, neutrophils were found isolated amid the infiltrate and, sometimes, inside blood vessels. The same was observed in C–N and C–O, but the number of cells was smaller (Figure 1d). The percentage

and tissue distribution of neutrophils are shown in Figure 2f and Tables S1 and S2. The concentration of neutrophils tended to be higher in ATL–O, yet not significantly AUY-922 so. Although the percentage of neutrophils

was similar in ATL–N and C–N, these cells were more widely distributed in ATL–N as compared with C–N, where they concentrated in rare foci, showing a difference in the distribution/mm2. ATL–O and C–O showed differences in the percentage and distribution of neutrophils/mm2. Regarding both macrophages and neutrophils, the two mucosal ATL lesions were similar. CD1a+ Langerhans cells were also present in all samples. In the epithelium, these cells were arranged side by side, with their projections forming a network. Langerhans cells were also found isolated in the lamina propria. In some ATL lesions, positive cells were detected between endothelial cells and inside vessels. No significant difference in the number of CD1a+ cells/mm2 this website was observed in the epithelium or lamina propria when comparing ATL–N and C–N, many ATL–O and C–O or ATL–N and ATL–O (Table S2). In view of the similar frequency and distribution of inflammatory cells in ATL–N and ATL–O, we evaluated the expression of inflammation markers. The basement membrane was positive for Ki67 in all mucosae that presented an epithelium. In the lamina propria, Ki67+ cells were homogeneously distributed throughout the inflammatory infiltrate in ATL lesions. In C–N and C–O, they formed small heterogeneous and sparse clusters. Lesions showed

a 3–4-fold increase in the number of Ki67+ cells than healthy tissue. The distribution of proliferating cells/mm2 was similar in the two ATL lesions, but the number of positive cells was higher in ATL–O (Table S1; Figure 3a). Bcl-2+ cells were heterogeneously distributed, even around vessels and glandular ducts. The concentration of these cells was higher in the lamina propria in all groups studied. The percentage of positive cells was similar in ATL–N and C–N, but because these cells were more diffusely distributed in ATL–N, the distribution/mm2 differed. In contrast, a significant difference was observed between ATL–O and C–O. There was no difference between ATL lesions (Tables S1 and S2; Figure 3b). However, we observed an association between higher concentration of Ki67+ and Bcl-2+ cells in ATL–O.

5) Only the two subjects who received 1010 BMB72 had IgA respons

5). Only the two subjects who received 1010 BMB72 had IgA responses against listeriolysin (data not shown). Responses to influenza nucleoprotein were not detected in these assays. These results were interpreted to represent low level mucosal immune response against the listerial vector only. Serological immune responses selleckchem were modest at best, with isolated individuals having four-fold or greater titer increases in ELISAs directed against listeriolysin or sonicated listerial antigen (denoted in Table 2 as one or two positive assays). No individual seroconverted to the recombinant nucleoprotein antigen.

Virtually all individuals had relatively high titers directed against recombinant nucleoproteins at baseline, which did not change over time (i.e. ≥1:640). Sera from other species (mouse and rabbit) studied similarly in ELISAs did not have similarly high baseline values, so these were interpreted to GDC0068 represent bona fide pre-existing immune responses to this influenza protein, rather than inadequate blocking or another technical problem with the assay. A high baseline is not unexpected, as most

subjects had evidence of cellular immunity to influenza A, and it is expected that most healthy young adults would have been exposed to influenza. Grouped by vaccine given, there was no statistically significant increase in IgG mean titers (GMT; pre-immune to peak value) directed against listerial sonicate, listeriolysin or nucleoprotein, as exemplified in Figure 6b (for listeriolysin). Baseline listeriolysin titers were high, which is not unexpected. Antibodies to streptolysins

present in commensal and pathogenic streptococci cross-react with listeriolysin (34). Our volunteers were required to have previously received penicillin Phosphatidylethanolamine N-methyltransferase or ampicillin, commonly administered to treat Group A streptococcal pharyngitis. Overall, mean serum IgA titers did increase modestly when considered as a group for both vaccine organisms (Fig. 6a). All subjects had positive control responses to the lectin PHA (usually TNTC), and all but one to the CEF control pool (subject No. 11 had both robust PHA responses and responses to sonicated listerial antigen, but no apparent response to CEF or influenza nucleoprotein peptides). Most subjects (17/22) had convincing baseline immune responses to at least one of the Influenza A nucleoprotein peptide test pools (tens to many hundreds of spots per million PBMC, see exemplary data in Fig. 7a). About two-thirds of the subjects (14/22) had some baseline responses to the listeriolysin peptide pools, with mean baseline value 21 (range 0–205) SFC/106 PBMC, comparable to others’ published work (35). ELISpot data were analyzed by individual and as a group by vaccine administered, irrespective of dose, as responses overall did not appear dose-related. Values were analyzed as pre-immune vs.

9 A recent paper that measured the thymi of African children demo

9 A recent paper that measured the thymi of African children demonstrated a closer relation between mortality factor and thymus size, and children who had malaria had smaller thymi.10 Thymocyte migration seems to be controlled by the combined effects of a series of molecular interactions, including those mediated by extracellular matrix proteins, as well as by chemokines, all being produced/secreted by thymic microenvironmental cells.9,11 For example, the chemokines CXCL12 and CCL25 are relevant for inducing the migration of developing thymocytes, an effect that is mediated by the CXCR4 and CCR9 receptors, respectively.12 The extracellular matrix (ECM) ligands, selleck kinase inhibitor fibronectin

and laminin, are also very important for the migration of developing thymocytes through their interaction with specific integrin-type receptors, including VLA-4 and VLA-5

(CD49d/CD29 and CD49e/CD29) with fibronectin, and VLA-6 (CD49f/CD29) with laminin.11,13,14 Again, any changes in these interactions might lead to a disturbance in thymocyte migration. In fact, this has been demonstrated in the thymus of the non-obese diabetic mouse, which has an expression/functional defect of VLA-5.15,16 Moreover, in Trypanosoma cruzi experimental infection, the thymic atrophy, here defined by loss of thymus weight and cellularity, was characterized by premature escape of immature cells, mainly the DP subpopulation, probably as a result of hyper-responsiveness to ECM and chemokine components, and resulting in the premature and abnormal escape of DP lymphocytes

and the consequent presence of immature T cells in Cabozantinib the periphery.17,18 Following from this, changes in the expression/function of one or more of the cell-migration-related molecules discussed above may result in abnormal intrathymic T-cell development with consequences in the shaping of the peripheral T-cell pool. Herein we investigated the intrathymic expression of ECM ligands and receptors, as well as chemokines and their respective receptors, during the experimental P. berghei infection. We also evaluated thymic atrophy in this infectious disease, and its possible Olopatadine consequences for the T-cell migratory response. Our data explain the significant intrathymic alterations in P. berghei-infected mice, comprising the expression of cell-migration-related ligands, including the ECM elements laminin and fibronectin, as well as the chemokines CCL25 and CXCL12. Moreover, the thymocyte migratory response to these ECM and chemokine ligands is enhanced in infected mice, suggesting that a defect in cell-migration-related thymic function may contribute to shaping the abnormal peripheral pool of T lymphocytes seen in murine malaria. Specific pathogen-free 8-week-old male BALB/c mice were purchased from CEMIB/UNICAMP (Campinas, São Paulo, Brazil) and housed in microisolator cages with free access to water and food.