“
“Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is a potential therapy for cerebral ischemia. Although
BMSCs-induced angiogenesis is considered important for neurological functional recovery, the neurorestorative mechanisms are not fully understood. We examined whether BMSCs-induced angiogenesis enhances cerebral tissue perfusion and creates a suitable microenvironment Selleckchem NVP-LDE225 within the ischemic brain, which in turn accelerates endogenous neurogenesis and leads to improved functional recovery. Adult female rats subjected to 2 h middle cerebral artery occlusion (MCAO) were transplanted with a subpopulation of human BMSCs from male donors (Flk-1+ hBMSCs) or saline into the ipsilateral brain parenchymal at 3 days after MCAO. Flk-1+ hBMSCs-treated rats exhibited significant behavioral recovery, beginning at 2 weeks after cerebral ischemia compared with controls. Moreover, rats treated with Flk-1+ hBMSCs showed increased glucose Cyclopamine mouse metabolic activity and reduced
infarct volume. Flk-1+ hBMSCs treatment significantly increased the expression of vascular endothelial growth factor and brain-derived neurotrophic factor, promoted angiogenesis, and facilitated cerebral blood flow in the ischemic boundary zone. Further, Flk-1+ hBMSCs treatment enhanced proliferation of neural stem/progenitor cells (NSPCs) in the subventricular zone and subgranular zone of the hippocampus. Finally, more NSPCs migrated toward the ischemic lesion and differentiated to mature neurons or glial cells with less apoptosis in Flk-1+ hBMSCs-treated rats. These data indicate that angiogenesis induced by Flk-1+ hBMSCs promotes endogenous neurogenesis, CHIR-99021 concentration which may cause functional recovery after cerebral
ischemia. “
“16S rRNA gene-based analysis of rumen Prevotella was carried out to estimate the diversity and diet specificity of bacteria belonging to this genus. Total DNA was extracted from the rumen digesta of three sheep fed two diets with different hay-to-concentrate ratios (10 : 1 and 1 : 2). Real-time PCR quantification of Prevotella revealed that the relative abundance of this genus in the total rumen bacteria was up to 19.7%, while the representative species Prevotella bryantii and Prevotella ruminicola accounted for only 0.6% and 3.8%, respectively. Denaturing gradient gel electrophoresis analysis for Prevotella revealed shifts in the community composition with the diet. Analysis of 16S rRNA gene clone libraries showed significant differences (P=0.001) between clones detected from the sheep on the diets with different hay-to-concentrate ratios. The majority (87.8%) of Prevotella clones had <97% sequence similarity with known rumen Prevotella. These data suggest that uncultured Prevotella is more abundant than known Prevotella and that members of this genus appear to have specific metabolic niches.